Monatshefte für Chemie 105, 689-711 (1974) © by Springer-Verlag 1974

## Thermodynamic Properties of Cobalt—Selenium Alloys\*

By

H. Jelinek and K. L. Komarek

Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria

### With 6 Figures

### (Received March 25, 1974)

Vapor pressures of selenium in cobalt—selenium alloys were determined by an isopiestic method between 600 and 1000 °C and between 52 and 66.6 at% Se. Activities of selenium were evaluated according to three methods taking into account the complexity of the selenium vapor. For the nonstoichiometric  $Co_{1-x}$ Se phase with NiAs-type structure a statistical model was applied. Activities and partial molar enthalpies of selenium derived by assuming random distribution of cobalt atoms and cobalt vacancies in the 001/2-layers of the NiAs-lattice are in very good agreement with the experimental values. The interaction energy between cobalt vacancies was found to be 7780 cal/g-atom.

In a continuation of the thermodynamic investigations of transition metal—chalcogen alloys<sup>1, 2</sup> the study was extended to the cobalt—selenium system. The partial Co—Se phase diagram described in various compilations<sup>3-5</sup> and mostly based on thermoanalytical investigations of Hashimoto<sup>6</sup>, and of Dudkin and Vaidanich<sup>7</sup>, is characterized by the nonstoichiometric compound  $\text{Co}_{1-x}\text{Se}$  of hexagonal B 8-C 6-type structure<sup>8, 9</sup> and by cubic pyrite-type  $\text{CoSe}_2^{10-12}$ . The results were largely confirmed by X-ray diffraction studies of Bøhm et al.<sup>13</sup>, who observed an additional, third compound,  $\text{Co}_9\text{Se}_8$ , with fcc pentlandite-type structure. At 600 °C they found for  $\text{Co}_{1-x}\text{Se}$  a continuous transformation from the hexagonal (from 50.5 to 53.5 at % Se) to the monoclinic (from 53.5 to 57.8 at % Se) symmetry.

At lower temperature the homogeneous  $\text{Co}_{1-x}$ Se phase region splits into a hexagonal  $\gamma$ -phase and a monoclinic  $\gamma'$ -phase with a miscibility gap which closes at 530 °C<sup>14, 15</sup>. Instead of nonstoichiometric Co<sub>1-x</sub>Se *Igaki* and *Noda*<sup>16, 17</sup> reported the existence of three

<sup>\*</sup> Dedicated to Prof. E. Hayek on the occasion of his 70th birthday.

distinct phases,  $CoSe_{1.03}$ ,  $CoSe_{1.13}$ , and  $CoSe_{1.30}$ , with a maximum melting point of 1055 °C at 53.0 at % Se.

Komarek and Wessely<sup>18</sup> constructed the complete Co—Se phase diagram, based on *DTA*- and X-ray measurements. Above 1448 °C there is a miscibility gap in cobalt-rich melts, above 952 °C another one in melts with more than 70 at % Se. Co<sub>1-x</sub>Se has a congruent melting point at 54.0 at % Se and 1078 °C and a maximum range of homogeneity between 50.7 at % Se at 910 °C and 59 at % Se at 952 °C.  $\alpha$ -Co and Co<sub>1-x</sub>Se form a eutectic at 44.5 at % Se and 910 °C. Co<sub>9</sub>Se<sub>8</sub> decomposes by a peritectoid reaction at 420 °C<sup>19</sup> into  $\alpha$ -Co and Co<sub>1-x</sub>Se, and CoSe<sub>2</sub> decomposes peritectically at 938 °C into Co<sub>1-x</sub>Se and a Se-rich melt. *Cambi* et al.<sup>20</sup> studied the thermal decomposition of CoSe<sub>2</sub> but their results do not agree with the established phase diagram.

Thermodynamic information on Co-Se alloys has been until recently virtually non existent. The enthalpy of formation of "CoSe" was determined by Fabre<sup>21</sup> using solution calorimetry at 25 °C as - 18.0 kcal mol<sup>-1</sup> and Karapet'yants<sup>22</sup> estimated the standard free energy of formation of CoSe at 25 °C to be -9.7 kcal mol<sup>-1</sup>. Eror and  $Wagner^{23}$  determined the vapor pressure of some alloys between 50.0 and 71.2 at % Se by the dew point method but they did not succeed in obtaining vapor pressure data for alloys with a selenium content less than 62.3 at% Se. Recently Laffitte and Cerclier<sup>14, 15</sup> determined activities of Co from 50.5 to 67.3 at% Se between 400 and 600  $^{\circ}\mathrm{C}$  using a solid electrolyte emf method. Matlasevich et al.<sup>24, 25</sup> measured Co activities between 51.7 and 66.7 at% Se and 360° and 550 °C by an emt method with a liquid electrolyte. Feenberg and Vaisburd<sup>26</sup> employed an emf method to obtain activities of Co in Co-Se melts at 1300 °C between 35 and 50 at% Se. Mills<sup>27</sup> has critically evaluated the thermodynamic data of Co-Se alloys based on data published in literature<sup>13</sup>, 14, 16, 21, 23.

In the present investigation thermodynamic activities of selenium of solid Co—Se alloys were determined by an isopiestic method. Cobalt specimens were equilibrated in a temperature gradient with selenium vapor from a source kept at the temperature minimum.

#### **Experimental Procedure**

The materials were 99.999 percent selenium shots (American Smelting and Refining Corp., New York) and 0.1 mm thick 99.9 percent cobalt foil (Sherritt Gordon Mines Ltd., Canada) with the following impurities (in per cent): 0.1 Ni, 0.014 C, 0.018 Fe, 0.004 S, 0.005 Cu.

The cobalt foil was punched into anular rings (20 mm OD, 11 mm ID) which were then cleaned in CCl<sub>4</sub> and acetone. They were weighed on a semi-microbalance to an accuracy of  $\pm$  0.05 mg, put into graphite crucibles, and then reweighed. All graphite parts were machined from high-purity

high-density  $(1.92 \text{ g cm}^{-3})$  graphite rods (United Carbon Products Corp., U.S.A.) and were heated before use at 1000  $^{\circ}$ C in vacuum (10<sup>-3</sup> torr) for three hours. The graphite crucibles (25 mm OD, 1.5 mm wall thickness) had press-fit lids and a hole (7 mm D) in the center for the quartz thermocouple well. All quartz parts were cleaned in hot cleaning solution, rinsed with distilled water, and dried. They were then evacuated to  $10^{-3}$  torr, heated for three hours at 1000 °C, and back-filled with argon at 800 °C. The quartz crucible (35 mm OD, 100 mm high) with selenium ( $\approx 30$  g) was at the bottom of the quartz equilibration tube (42 mm OD, 2 mm wall thickness,  $\approx 500$  mm long) which was connected at the top by a ground quartz joint to a vacuum system. 20 to 25 graphite crucibles separated by graphite spacers were stacked on the quartz thermocouple well (5 mm OD) which reached into a slightly larger quartz well placed into the center of the selenium reservoir. The quartz thermocouple well was fused at the top to a larger quartz tube (35 mm OD). The position of the graphite crucibles with respect to the selenium reservoir was measured to within  $\pm 0.5$  mm. The equilibration tube was repeatedly evacuated and filled with argon and finally sealed to the quartz tube attached to the top of the thermocouple well under a vacuum of  $10^{-4}$  torr.

The equilibration tube was inserted in a vertical resistance furnace with two separately controlled windings. The end with the selenium reservoir was surrounded by a Cu cylinder (80 mm high) to give a zone of constant temperature ( $\pm$  0.5 °C). The temperature of the two windings was controlled by Ni/Cr-Ni thermocouples connected to single-point controllers (Type Bitric M 1, Hartmann & Braun, Frankfurt, BRD). The temperature of the samples and of the reservoir was determined by moving a Pt/Pt-10 percent Rh thermocouple up and down the quartz thermocouple well with a motor and by synchronously registering the output of the thermocouple with a recording arrangement previously described  $^{28}$ . The thermocouple was calibrated against the freezing points of high-purity Cd, Zn, Sb, Ag, and Cu by the standard NBS procedure<sup>29</sup>. An experiment lasted for several weeks and was terminated by quenching the tube in water and by simultaneously inserting a Cu-rod into the quartz thermocouple well. The samples were weighed and put back into the furnace for one more week under identical conditions. If the samples showed no further weight change, the length of the treatment was taken as having been sufficient for equilibration. The selenium content of the samples was calculated from the weight difference. In separate tests it was ascertained that heating Co foil in a graphite crucible at 1000 °C for three weeks and a graphite crucible in selenium vapor at 900 °C for two weeks did not produce any noticeable weight changes of the Co foil and of the graphite crucible, resp. The composition of the samples was also checked by chemical analysis. The specimens were dissolved in aqua regia and excess HNO<sub>3</sub> was destroyed by evaporation. Hexamethylene tetramine was added as a buffer to the dilute aqueous solution and Co determined by titration with a 10<sup>-2</sup>M-EDTA solution using methylthymol blue as an indicator. Co contents by chemical analyses agreed with those by weight changes within  $\pm$  0.3 percent.

X-ray powder patterns were taken in a 57 mm Debye-Scherrer camera using  $\operatorname{CoK}_{\alpha}$  radiation with a Fe-filter. The reflexes of the hexagonal NiAsphase were evaluated by extrapolating the curves of lattice parameter vs  $\frac{1}{2}(\cos^2 \delta / \sin \delta + \cos^2 \delta / \delta)$  towards  $\delta = 90^{\circ}$ .

| Num-                   | Temp.,     | -+0/ S-         | $-\log a_{\rm Se}$ | $-\Delta \overline{H}_{se}$ | $-\log a_{\rm Se}$ | $-\Delta \overline{H}_{se}$ | $-\log a_{se}$ | $-\Delta \overline{H}_{Se}$ |
|------------------------|------------|-----------------|--------------------|-----------------------------|--------------------|-----------------------------|----------------|-----------------------------|
| per                    | (0)        | at% Se          | (Metn              | (0a A)                      | (metu              | οα Β)                       | (meru          | oa C)                       |
|                        |            |                 |                    | Run 1                       |                    |                             |                |                             |
| 1                      | 038        | 51 97           | 9 1 8 2            | 91.36                       | 2 035              | 18.80                       | 9 993          | 19.05                       |
| 9                      | 930        | 51.87           | 2.183              | 21.30                       | 2.035              | 18.88                       | 2.220          | 19.00                       |
| 2                      | 994<br>097 | 59.09           | 2.177              | 21.30                       | 2.028              | 18.86                       | 2.213          | 19.04                       |
| 3<br>1                 | 927        | 52.02           | 2.104              | 21.00                       | 2.014              | 19.00                       | 2.200          | 10.02                       |
| 4<br>5                 | 920        | 59.10           | 2.102              | 21.00                       | 1 077              | 19.00                       | 2.131          | 18.00                       |
| 0<br>C                 | 909        | 52.10           | 2.101              | 21.00                       | 1.977              | 10.04                       | 2.109          | 10.00                       |
| 0                      | 902        | 04.04<br>50 55  | 2.120              | 41.04<br>01.09              | 1.904              | 10.02                       | 2.130          | 18.02                       |
| 7                      | 888        | 92.99<br>59.69  | 2.094              | 21.32                       | 1.934              | 10.79                       | 2.129          | 10.95                       |
| 8                      | 878        | 52.03           | 2.075              | 21.31                       | 1.913              | 10.77                       | 2.109          | 10.91                       |
| 9                      | 860        | 52.87           | 2.040              | 21.30                       | 1.873              | 18.74                       | 2.072          | 10.07                       |
| 10                     | 847        | 53.00           | 2.013              | 21.30                       | 1.842              | 18.72                       | 2.041          | 10.04                       |
| 11                     | 824        | 53.34           | 1.907              | 21.26                       | 1.789              | 18.07                       | 1.990          | 10.70                       |
| 12                     | 807        | 53.54           | 1.931              | 21.24                       | 1.747              | 18.03                       | 1.947          | 10.11                       |
| 13                     | 777        | 54.07           | 1.804              | 21.17                       | 1.009              | 18.48                       | 1.800          | 10.07                       |
| 14                     | 750        | 54.55           | 1.801              | 21.09                       | 1.594              | 18.28                       | 1.783          | 10.40                       |
| 15                     | 709        | 55.45           | 1.698              | 20.90                       | 1.472              | 17.83                       | 1.652          | 18.19                       |
| 16                     | 681        | 56.32           | 1.623              | 20.58                       | 1.381              | 17.38                       | 1.005          | 17.82                       |
| Kes.                   | 318        |                 |                    |                             |                    |                             |                |                             |
|                        |            |                 |                    | $\operatorname{Run} 2$      |                    |                             |                |                             |
| 1                      | 072        | 59.13           | 1 957              | 21 35                       | 1.820              | 18 84                       | 2 012          | 19.00                       |
| 1<br>9                 | 972        | 52.15           | 1.907              | 21.55                       | 1.805              | 18.82                       | 2.012          | 18.98                       |
| 2                      | 903        | 52.23           | 1.540              | 21.30                       | 1.005              | 18.81                       | 1 988          | 18.95                       |
| 3<br>1                 | 950        | 59.49           | 1.344              | 21.34                       | 1 779              | 18.80                       | 1.930          | 18.94                       |
| 4.<br>~                | 940        | 02.42<br>E0 E4  | 1.914              | 21.04                       | 1.775              | 18.00                       | 1.048          | 18.02                       |
| 0<br>C                 | 930        | 92.94<br>79.70  | 1.094              | 21.02<br>01.91              | 1.701              | 10.75                       | 1 094          | 18.88                       |
| 0                      | 921        | 92.18<br>79.06  | 1.871              | 21.01                       | 1.744              | 10.70                       | 1.324<br>1 807 | 18.85                       |
| 7                      | 907        | 52.90           | 1.840              | 21.30                       | 1.090              | 10.74                       | 1.007          | 10.00                       |
| 8                      | 897        | 23.10           | 1.828              | 21.28                       | 1.070              | 10.10                       | 1.075          | 18 77                       |
| 10                     | 881        | 53.29           | 1.797              | 21.20                       | 1.040              | 10.07                       | 1.049          | 18 75                       |
| 10                     | 870        | 53.40           | 1.777              | 21.20                       | 1.017              | 18.00                       | 1.040          | 18.67                       |
| 10                     | 800        | 00.70<br>20.00  | 1.707              | 21.22                       |                    | 18.00                       | 1.756          | 18.63                       |
| 12                     | 838        | 00.00<br>= 4.00 | 1.715              | 21.20                       | 1.044              | 18.00                       | 1 600          | 18.59                       |
| 13                     | 810        | 04.28<br>54.59  | 1,004              | 21.14                       | 1.400              | 10.40                       | 1.657          | 18.44                       |
| 14                     | 798        | 54.53<br>57 15  | 1.028              | 21.09                       | 1.440              | 10.20                       | 1.007          | 18.95                       |
| 15                     | 768        | 55.17           | 1.501              | 20.96                       | 1.307              | 17.97                       | 1.572          | 18.06                       |
| 10                     | 747        | 55.68<br>56.50  | 1.011              | 20.82                       | 1.508              | 17.74                       | 1 281          | 17.65                       |
| 17                     | 708        | 56.70           | 1.351              | 20.40                       | 1.191              | 16.20                       | 1.301          | 17.05                       |
| 18                     | 685        | 57.50           | 1.242              | 19.80                       | 1.117              | 10.80                       | 1.501          | 17.10                       |
| Res.                   | 360        | <u> </u>        |                    |                             |                    |                             |                |                             |
|                        |            |                 |                    | Run 3                       |                    |                             |                |                             |
| 1                      | 964        | 52.57           | 1.736              | 21.31                       | 1.601              | 18.79                       | 1.803          | 18.93                       |
| 2                      | 952        | 52.84           | 1.716              | 21.31                       | 1.579              | 18.75                       | 1.781          | 18.87                       |
| $\tilde{\overline{3}}$ | 947        | 52.89           | 1.707              | 21.31                       | 1.570              | 18.74                       | 1.774          | 18.85                       |
| 4                      | 938        | 53.10           | 1.692              | 21.29                       | 1.552              | 18.70                       | 1.758          | 18.81                       |
| $\overline{5}$         | 931        | 53.17           | 1.680              | 21.28                       | 1.539              | 18.69                       | 1.745          | 18.79                       |

Table 1. Experimental Isopiestic Results in the Co-Se System

Table 1 (continued)

| Num-<br>ber | Temp.,<br>(°C) | at% Se | $-\log a_{ m Se} - \Delta \overline{H}_{ m Se}$<br>(Method A) | $\frac{-\log a_{\rm Se} - \Delta \overline{H}_{\rm Se}}{({\rm Method ~B})}$ | $\frac{-\log a_{\rm Se} - \Delta \overline{H}_{\rm Se}}{({\rm Method \ C})}$ |
|-------------|----------------|--------|---------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 6           | 918            | 53.43  | 1.657  21.25                                                  | 1.513 18.65                                                                 | 1.722 18.74                                                                  |
| 7           | 909            | 53.50  | 1.641  21.25                                                  | 1.495 18.64                                                                 | 1.705 18.70                                                                  |
| 8           | 893            | 53.80  | 1.612  21.21                                                  | 1.462  18.57                                                                | 1.674  18.62                                                                 |
| 9           | 880            | 54.00  | 1.588  21.17                                                  | 1.435  18.52                                                                | 1.649  18.60                                                                 |
| 10          | 860            | 54.20  | 1.549  21.15                                                  | 1.390  18.43                                                                | 1.608  18.51                                                                 |
| 11          | 845            | 54.40  | 1.519  21.12                                                  | 1.356 18.35                                                                 | 1.588 18.46                                                                  |
| 12          | 812            | 54.95  | 1.450  21.02                                                  | 1.276  18.08                                                                | 1.496  18.32                                                                 |
| 13          | <b>788</b>     | 55.42  | 1.398  20.90                                                  | 1.215  17.84                                                                | 1.425  18.17                                                                 |
| 14          | 747            | 56.40  | 1.302  20.55                                                  | 1.122  17.35                                                                | 1.302  18.78                                                                 |
| 15          | 725            | 57.11  | 1.248  20.13                                                  | 1.038 17.41                                                                 | 1.241  17.41                                                                 |
| Res.        | 395            |        |                                                               |                                                                             |                                                                              |
|             |                |        | Run 4                                                         |                                                                             |                                                                              |
| 1           | 950            | 53.77  | 1.339  21.21                                                  | 1.208  18.58                                                                | 1.411  18.66                                                                 |
| <b>2</b>    | 946            | 53.88  | 1.332  21.20                                                  | 1.200  18.55                                                                | 1.406  18.62                                                                 |
| 3           | 939            | 53.95  | 1.320  21.19                                                  | 1.187  18.53                                                                | 1.392  18.61                                                                 |
| 4           | 932            | 54.10  | 1.308  21.16                                                  | 1.173  18.47                                                                | 1.381  18.57                                                                 |
| 5           | 924            | 54.24  | 1.294  21.15                                                  | 1.158  18.42                                                                | 1.365  18.53                                                                 |
| 6           | 915            | 54.39  | 1.278  21.12                                                  | 1.140  18.36                                                                | 1.351  18.49                                                                 |
| 7           | 905            | 54.59  | 1.260  21.09                                                  | 1.118  18.27                                                                | 1.331  18.43                                                                 |
| 8           | 897            | 54.63  | 1.246  21.08                                                  | 1.103  18.25                                                                | 1.316  18.42                                                                 |
| 9           | 885            | 54.86  | 1.223  21.04                                                  | 1.078  18.14                                                                | 1.292  18.35                                                                 |
| 10          | 877            | 54.92  | 1.207  21.02                                                  | 1.059  18.11                                                                | 1.276  18.33                                                                 |
| 11          | 861            | 55.30  | 1.177  20.94                                                  | 1.025  17.90                                                                | 1.243  18.20                                                                 |
| 12          | 849            | 55.50  | 1.153  20.88                                                  | 0.998  17.80                                                                | 1.218  18.13                                                                 |
| 13          | 841            | 55.62  | 1.137  20.85                                                  | 0.979  17.74                                                                | 1.199  18.08                                                                 |
| 14          | 818            | 56.02  | 1.090  20.71                                                  | 0.924  17.53                                                                | 1.145  17.92                                                                 |
| 15          | 788            | 56.87  | 1.024  20.28                                                  | 0.848  17.22                                                                | 1.066  17.57                                                                 |
| 16          | <b>772</b>     | 57.40  | 0.987 19.90                                                   | 0.805  16.85                                                                | 1.019  17.22                                                                 |
| 17          | 750            | 58.32  | 0.936  18.75                                                  | 0.745  16.40                                                                | 0.954  16.32                                                                 |
| Res.        | 469            |        |                                                               |                                                                             |                                                                              |
|             |                |        | $\operatorname{Run} 5$                                        |                                                                             |                                                                              |
| 1           | 964            | 53.25  | 1.514  21.27                                                  | 1.383  18.68                                                                | 1.568  18.82                                                                 |
| <b>2</b>    | 955            | 53.32  | 1.499  21.26                                                  | 1.367  18.67                                                                | 1.569  18.76                                                                 |
| 3           | 951            | 53.40  | 1.491  21.25                                                  | 1.358  18.66                                                                | 1.563  18.75                                                                 |
| 4           | <b>944</b>     | 53.51  | 1.481  21.24                                                  | 1.346  18.64                                                                | 1.551  18.72                                                                 |
| 5           | 938            | 53.60  | 1.470  21.23                                                  | 1.335  18.62                                                                | 1.540  18.70                                                                 |
| 6           | 928            | 53.70  | 1.452  21.22                                                  | 1.314  18.59                                                                | 1.522  18.68                                                                 |
| 7           | 920            | 53.90  | 1.438  21.20                                                  | 1.298  18.54                                                                | 1.508  18.62                                                                 |
| 8           | 903            | 54.15  | 1.408  21.16                                                  | 1.264  18.46                                                                | 1.475  18.55                                                                 |
| 9           | 892            | 54.30  | 1.388  21.14                                                  | 1.242  18.40                                                                | 1.434  18.52                                                                 |
| 10          | 872            | 54.60  | 1.350  21.08                                                  | 1.199  18.26                                                                | 1.416  18.43                                                                 |
| 11          | 858            | 54.90  | 1.322  21.02                                                  | 1.167  18.22                                                                | 1.385  18.34                                                                 |
| 12          | 831            | 55.30  | 1.268  20.94                                                  | 1.105  17.90                                                                | 1.325  18.20                                                                 |
| 13          | 811            | 55.63  | 1.226  20.84                                                  | 1.056  17.73                                                                | 1.276  18.08                                                                 |
| 14          | 780            | 56.28  | 1.158  20.61                                                  | 0.977  17.42                                                                | 1.194  17.82                                                                 |

693

| Table  | 1 | (continued)  |
|--------|---|--------------|
| 7 1010 | - | (contractor) |

| Num-<br>ber | Temp.,<br>(°C) | at% Se | $-\log a_{ m Se} - \Delta \overline{H}_{ m Se}$<br>(Method A) | $\begin{array}{c} -\log a_{\rm Se} - \Delta \overline{H}_{\rm Se} \\ ({\rm Method} \ {\rm B}) \end{array}$ | $-\log a_{ m Se} - \Delta \overline{H}_{ m Se}$ (Method C) |
|-------------|----------------|--------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 15          | 761            | 56 90  | 1 114 20 27                                                   | 0.925 17.10                                                                                                | 1 136 17 55                                                |
| 16          | 728            | 64 51  | 0.997                                                         | 0.787                                                                                                      | 0.986                                                      |
| 17          | 688            | 66 67  | 0.029                                                         | 0.706                                                                                                      | 0.898                                                      |
| 18          | 654            | 66 70  | 0.833                                                         | 0.593                                                                                                      | 0.050                                                      |
| 10          | 639            | 66 75  | 0.000                                                         | 0.517                                                                                                      | 0.679                                                      |
| 20          | 598            | 66 80  | 0.100                                                         | 0.398                                                                                                      | 0.538                                                      |
| 20          | 575            | 66.90  | 0.577                                                         | 0.319                                                                                                      | 0.438                                                      |
| Res.        | 437            |        | 0.011                                                         | 0.010                                                                                                      | 0.100                                                      |
|             |                |        | Run 6                                                         |                                                                                                            |                                                            |
| 1           | 1003           | 53.60  | 1 175 91 94                                                   | 1.058 18.61                                                                                                | 1 240 18 70                                                |
| 2           | 1005           | 53 78  | $1.175 21.2\pm$<br>1 171 21 21                                | 1 053 18 59                                                                                                | 1 234 18 65                                                |
| 2           | 995            | 53.85  | 1 163 21 20                                                   | 1 045 18 56                                                                                                | 1 226 18.63                                                |
| 3<br>4      | 080            | 54.01  | 1 153 21 17                                                   | 1 034 18 51                                                                                                | 1 217 18 59                                                |
| 5           | 982            | 54 13  | 1 142 21 16                                                   | 1 022 18.46                                                                                                | 1.206 18.56                                                |
| 6           | 975            | 54 25  | 1.132 - 1.10<br>1 131 21 15                                   | 1 010 18.41                                                                                                | 1.193 18.53                                                |
| 7           | 966            | 54.42  | 1.101 - 21.10<br>1 116 - 21.11                                | 0 993 18.34                                                                                                | 1.180 18.48                                                |
| 8           | 959            | 54.50  | 1.105 21.10                                                   | 0.980 18.30                                                                                                | 1.167 18.45                                                |
| 9           | 948            | 54.62  | 1.087  21.08                                                  | 0.961 18.25                                                                                                | 1.147 $18.42$                                              |
| 10          | 940            | 54.74  | 1.073 21.05                                                   | 0.943 18.19                                                                                                | 1.133 18.38                                                |
| 11          | 927            | 54.95  | 1.049 21.01                                                   | 0.919 18.08                                                                                                | 1.010  18.32                                               |
| 12          | 917            | 55.18  | 1.033 20.96                                                   | 0.900 17.96                                                                                                | 1.193 18.25                                                |
| 13          | 901            | 55.35  | 1.003 20.92                                                   | 0.867  17.87                                                                                               | 1.064  18.18                                               |
| 14          | 889            | 55.43  | 0.982 20.90                                                   | 0.842 <b>17.84</b>                                                                                         | 1.039  18.15                                               |
| $15^{}$     | 867            | 55.93  | 0.939  20.75                                                  | 0.794 17.58                                                                                                | 0.995  17.97                                               |
| 16          | 852            | 56.34  | 0.910 20.58                                                   | 0.761  17.38                                                                                               | 0.964  17.82                                               |
| 17          | 821            | 57.21  | 0.846  20.05                                                  | 0.688  16.98                                                                                               | 0.891  17.35                                               |
| 18          | 801            | 57.87  | 0.804 19.37                                                   | 0.639 16.60                                                                                                | 0.842  16.80                                               |
| 19          | 769            | 66.20  | 0.732                                                         | 0.557                                                                                                      | 0.752                                                      |
| <b>20</b>   | 753            | 66.66  | 0.694                                                         | 0.514                                                                                                      | 0.704                                                      |
| 21          | 722            | 66.73  | 0.617                                                         | 0.429                                                                                                      | 0.607                                                      |
| 22          | 708            | 66.78  | 0.581                                                         | 0.389                                                                                                      | 0.559                                                      |
| 23          | 681            | 66.80  | 0.509                                                         | 0.315                                                                                                      | 0.469                                                      |
| <b>24</b>   | 666            | 66.83  | 0.466                                                         | 0.275                                                                                                      | 0.416                                                      |
| 25          | 638            | 66.86  | 0.384                                                         | 0.205                                                                                                      | 0.308                                                      |
| <b>26</b>   | 623            | 66.97  | 0.336                                                         | 0.170                                                                                                      | 0.254                                                      |
| Res.        | 527            |        |                                                               |                                                                                                            |                                                            |

# Experimental Results

A total of six experiments lasting from four to eight weeks were carried out. Reservoir temperatures ranged between 318 and 527 °C, sample temperatures between 570 and 1000 °C, and temperature gradients between 480 and 620 °C.

The experimental data for all specimens are listed in Table 1. Sample compositions, and sample and reservoir temperatures, superimposed



Fig. 1. Specimen composition versus specimen temperature and partial Co—Se phase diagram

on the partial phase diagram<sup>18</sup>, are shown in Fig. 1. Run one and two were quenched after two weeks, the samples weighed, and treated again one week under the same experimental conditions. Samples in the  $Co_{1-x}Se$  phase field showed no change in weight and had attained equilibrium but those in the  $CoSe_2$  range increased in weight and were



Fig. 2. Reciprocal reservoir temperature versus reciprocal sample temperature

therefore not equilibrated. Heat treatment for another week showed similar effects. These samples were used in run three and four with higher reservoir temperatures but after two weeks it was still not possible to bring the  $CoSe_2$  phase into equilibrium. Non-equilibration of the specimens in the  $\text{CoSe}_2$  range, however, did not affect equilibration of samples in the  $\text{Co}_{1-x}$ Se field. Run five and six were quenched after seven weeks. A further treatment of one more week did not produce weight changes of any samples, indicative of complete equilibration. According to X-ray powder patterns sample 16 of run five and sample 19 of run six were two-phase ( $\text{Co}_{1-x}$ Se and  $\text{CoSe}_2$ ). These specimens must be practically at the phase boundary so that slight temperature fluctuations will cause their compositions to change back and forth within the two-phase region.

The selenium-rich phase boundary of the  $\operatorname{Co}_{1-x}$ Se phase is in excellent agreement with the results of Bohm et al.<sup>13</sup> of 57.8 at% Se at 600 °C and of *Komarek* and *Wessely*<sup>18</sup> of 59.0 at% Se at 952 °C. The cobalt-rich boundary of the  $\operatorname{Co}_{1-x}$ Se phase could not be determined since it was not possible to attain the necessary temperature gradients with the present equipment. The equilibrium curves of run five and six indicate a small range of homogeneity for  $\operatorname{CoSe}_2$  which extends from 66.7 to 67.0 at% Se and is clearly situated at the selenium-rich side of the stoichiometric composition. In Fig. 2 reciprocal reservoir temperatures  $(T_R)$  are plotted versus reciprocal specimen temperatures  $(T_S)$ . Data points for alloys of equal composition lie on straight lines which proves that the results are consistent.

The evaluation of the activities in the isopiestic method is based on the fact that the vapor pressure in the equilibration tube is determined by the volatile pure component at the reservoir temperature. In equilibrium the vapor pressure of the volatile component of each alloy sample will therefore be equal to the vapor pressure of the pure component at the temperature minimum,  $T_R$ .

The activity of the volatile component of an equilibrated sample,  $a_i$ , is given by

$$a_i = \left(\frac{p(i_n) (\operatorname{at} T_S)}{p^\circ(i_n) (\operatorname{at} T_S)}\right)^{1/n} \tag{1}$$

If there is only one molecular species,  $i_n$ , in the vapor phase, then

$$p(i_n) \text{ (at } T_S) = p^{\circ}(i_n) \text{ (at } T_R)$$
(2)

and activities can be directly calculated from the saturation vapor of the volatile component.

Furthermore, partial molar enthalpies  $\Delta \overline{H_i}$  can be obtained from plots like Fig. 2 using a form of the Clausius-Clapeyron equation

$$\frac{1}{T_R} = \frac{(\Delta H_{\text{ev}}^\circ - n \,\Delta H_i)}{\Delta H_{\text{ev}}^\circ \cdot T_S} + C \tag{3}$$

with  $\Delta H^{\bullet}_{ev}$  the enthalpy of evaporation of the pure volatile component.

Selenium vapor, however, contains all species between Se<sub>2</sub> and Ses<sup>30</sup>, the vapor composition will therefore change with temperature, and the calculation of the Se activities from isopiestic experiments employing temperature gradients will be much more complicated. Since no direct measurements of the composition of Se vapor as a function of temperature have been made in the temperature range of our experiments, three different methods of calculation were employed.

In method A it was assumed that only Se<sub>2</sub> is present in the vapor phase which as a first approximation seems justified at least at high temperatures since the vapor composition is shifting with increasing temperature more and more towards Se<sub>2</sub><sup>30, 31</sup>. Activities were calculated from Eqs. (1) and (2) with n = 2 using for the total pressure of Se *Baker's* results<sup>32</sup>

$$\log p^{\circ} (\Sigma \operatorname{Se}_{n}) = -5043/T + 5.265 \text{ (atm)}$$
(4)

which are good agreement with the data of Brebrick<sup>33</sup> and Brooks<sup>34</sup>.

Method B is based on empirical equations derived by  $Rau^{31}$  from measurements of the average molecular weight of the Se vapor and of the total vapor pressure of Se. The empirical equations were obtained by curve-fitting as if only Se<sub>2</sub>, Se<sub>4</sub>, Se<sub>6</sub>, and Se<sub>8</sub> were present in the vapor. The total vapor pressure is then given by

$$p = p(\text{Se}_2) + p(\text{Se}_2)^2/A + p(\text{Se}_2)^3/B + p(\text{Se}_2)^4/C$$
(5)

with

$$\log A = -\frac{8175}{T} + 11.526 \tag{6}$$

$$\log B = -14541/T - 1.510 \log T + 24.523 \tag{7}$$

$$\log C = -\frac{23573}{T} - 3.020 \log T + 42.024 \tag{8}$$

The saturation vapor pressure of liquid Se could be expressed by

$$\log p^{\circ}(\Sigma \operatorname{Se}_{n}) = --4955/T + 5.175 \text{ (atm)}$$
(9)

and the partial pressure of  $Se_2$  by

$$\log p^{\circ}(\text{Se}_2) = -7712/T - 3.927 \log T + 19.340 \text{ (atm)}$$
 (10)

The parameters A, B, and C were calculated from Eqs. (6) to (8) for each specimen temperature. Since the pressure in the equilibration tube is constant and therefore the total vapor pressure above the specimen at  $T_S$  is equal to that of liquid Se at  $T_R$ , the total vapor pressure, p, at  $T_R$  could be obtained from Eq. (9). The partial pressure of Se<sub>2</sub> in the vapor at  $T_S$  was then calculated by inserting the values for A, B, C, and p in Eq. (5) and solving for  $p(\text{Se}_2)$ . This value was divided according to Eq. (1) by  $p^{\circ}(\text{Se}_2)$  [from Eq. (10) solved for  $T_S$ ],

|                             | Table 2.             | Extrapolated Saturation | ). Partial Pressures $p^{\circ}(\mathbf{S})$ | $\mathbf{e}_{x}$ ) (atm) |                      |
|-----------------------------|----------------------|-------------------------|----------------------------------------------|--------------------------|----------------------|
| Temperature                 | 500 °C               | 550 °C                  | Q° 008                                       | 650 °C                   | O° 588               |
| $p^{\circ}(Se_2)$           | $1.22\cdot 10^{-2}$  | $4.09\cdot 10^{-2}$     | $1.19\cdot 10^{-1}$                          | $3.04\cdot10^{-1}$       | $5.78 \cdot 10^{-1}$ |
| $p^{\circ}(Se_3)$           | $2.30\cdot 10^{-4}$  | $9.70\cdot10^{-4}$      | $3.58\cdot10^{-3}$                           | $1.12\cdot 10^{-2}$      | $2.33 \cdot 10^{-2}$ |
| $p^{\circ}(\text{Se4})$     | $5.50\cdot10^{-4}$   | $2.24\cdot10^{-3}$      | $8.10 \cdot 10^{-3}$                         | $2.52\cdot10^{-2}$       | $5.18 \cdot 10^{-2}$ |
| $p^{\circ}(Se_5)$           | $7.14 \cdot 10^{-3}$ | $1.74\cdot10^{-2}$      | $3.75\cdot 10^{-2}$                          | $7.80\cdot10^{-2}$       | $1.22 \cdot 10^{-1}$ |
| $p^{\circ}(Se_6)$           | $1.26\cdot10^{-2}$   | $2.82 \cdot 10^{-2}$    | $5.73 \cdot 10^{-2}$                         | $1.08\cdot 10^{-1}$      | $1.60 \cdot 10^{-1}$ |
| $p^{\circ}(\text{Se}_7)$    | $4.56\cdot10^{-3}$   | $9.90\cdot10^{-3}$      | $2.03 \cdot 10^{-2}$                         | $3.74\cdot10^{-2}$       | $5.60 \cdot 10^{-2}$ |
| $p^{\circ}(\mathrm{Seg})$   | $6.20 \cdot 10^{-4}$ | $1.42\cdot 10^{-3}$     | $3.02\cdot 10^{-3}$                          | $5.90\cdot10^{-3}$       | $8.90 \cdot 10^{-3}$ |
| $\Sigma p^0(\mathrm{Se}_x)$ | $3.79\cdot 10^{-2}$  | $1.01 \cdot 10^{-1}$    | $2.49\cdot10^{-1}$                           | $5.70 \cdot 10^{-1}$     | $1.00\cdot10^{0}$    |
| Temperature                 | D° 007               | 750 °C                  | D° 008                                       | 000 °C                   | 1000 °C              |
| $p^{0}(\mathrm{Se}_{2})$    | $7.33 \cdot 10^{-1}$ | $1.56 \cdot 10^{0}$     | $3.12\cdot 10^0$                             | $8.55 \cdot 10^{0}$      | $1.64 \cdot 10^1$    |
|                             |                      |                         |                                              |                          |                      |

699

the partial pressure of Se<sub>2</sub> in the saturated vapor at  $T_S$ , to obtain the activity of Se.

Method C is the most direct approach and it is based on the measurements of the temperature dependence of the saturation partial pressures  $p^{\circ}(\text{Se}_x)$  (x = 2-8) between 200 and 450 °C by a mass spectrometric electrochemical *Knudsen* method<sup>\* 30</sup>. Since the plots of log  $p^{\circ}(\text{Se}_n)$  vs. 1/T show little curvature, the curves for  $p^{\circ}(\text{Se}_3)$  to  $p^{\circ}(\text{Se}_8)$ were extrapolated to the boiling point of Se (685 °C) and for  $p^{\circ}(\text{Se}_2)$ to 1000 °C. The extrapolated values, listed in Table 2\*\*, add up to one atm at 685 °C. In order to calculate the Se activities according

Table 3. Enthalpies of Reaction  $[\operatorname{Se}_{x(g)} = (x/2) \operatorname{Se}_{2(g)}]$  $\Delta H_x^{\circ}$  $\operatorname{Se}_x$  $(\text{kcal/mol Se}_x)$ Se<sub>3</sub> 7.8623.74 $Se_4$ 52.23Se<sub>5</sub> 70.51Se<sub>6</sub> 85.10Se<sub>7</sub> Se<sub>8</sub> 100.28

to Eq. (1), we again selected Se<sub>2</sub> as the reference species. The total vapor pressure is given by

$$p = p(Se_2) + p(Se_3) + p(Se_4) + p(Se_5) + p(Se_6) + p(Se_7) + p(Se_8) =$$
  
=  $\Sigma p(Se_x).$  (11)

There are six equations of the kind

$$\operatorname{Se}_{x(g)} = (x/2) \operatorname{Se}_{2(g)}$$
 (12)

connecting the various molecular species with Se<sub>2</sub>, with the equilibrium constants

$$K_x = p(\operatorname{Se}_2)^{x/2} / p(\operatorname{Se}_x).$$
(13)

Combining Eqs. (11) and (13) we get

$$p = p(\text{Se}_2) + \sum_{x=3}^{8} p(\text{Se}_2)^{x/2} / K_x.$$
(14)

<sup>\*</sup> The authors are grateful to Prof. J. Drowart, Univ. of Brussels, for making available to them the data before publication.

<sup>\*\*</sup> The values are in excellent agreement with an independent evalution of  $Mills^{27}$ .

Applying the Gibbs-Helmholtz equation with  $T_R$  and  $T_S$  as limits we obtain

$$K_x(\text{at } T_S) = K_x(\text{at } T_R) \exp\left[(-\Delta H_x^{\circ}/R)(T_R - T_S)/(T_S \cdot T_R)\right]$$
(15)

with  $\Delta H_x^{\circ}$  the enthalpies of dissociation of Eqs. (12).  $K_x$  (at  $T_R$ ) can be calculated from Eq. (13) using the known saturation partial



Fig. 3. Activity of Se as a function of temperature

pressures. The  $\Delta H_x^{\circ}$  values were obtained from the enthalpies of atomization<sup>30</sup>,  $\Delta H_{0,A}^{\circ}(\text{Se}_x)$ , according to

$$\Delta H_x^{\circ} = \Delta H_{0, \mathcal{A}}^{\circ}(\operatorname{Se}_x) - (x/2) \Delta H_{0, \mathcal{A}}^{\circ}(\operatorname{Se}_2)$$
(16)

and are listed in Table 3. Since the total pressure, p, in the equilibration tube is fixed by  $T_R$ , the partial pressures of Se<sub>2</sub>,  $p(Se_2)$ , which are in equilibrium with the specimens can be obtained by combining

Monatshefte für Chemie, Bd. 105/4

Eqs. (14), (15), and (16). The result is an equation of the eighth order which was solved by a computer program (iterative Newton method). The physically meaningful value for  $p(\text{Se}_2)$  was selected and together with the saturation partial pressure of  $\text{Se}_2$ ,  $p^{\circ}(\text{Se}_2)$ , taken from the extrapolated vapor pressure curve (Table 2) or from the results of *Keller* et al.<sup>30</sup>, introduced in Eq. (1) to calculate the activity of Se.



Fig. 4. Partial molar enthalpy of Se and integral molar enthalpy in the  $\operatorname{Co}_{1-x}$ Se phase

The activities of Se, calculated according to methods A, B, and C are listed in Table 1. Since the complexity of the Se vapor ruled out an evaluation of the partial molar enthalpy of Se according to Eq. (3), the activities were plotted as  $\log a_{\rm Se}$  vs. 1/T, shown in Fig. 3 for method C as an example. For selected compositions temperatures were interpolated on the equilibration curves in Fig. 1 and their reciprocal values plotted on the  $\log a_{\rm Se}$  vs. 1/T curves in Fig. 3. For a given composition these points lie on a straight line according to

# $\log a_{\rm Se}({\rm at} \ T_2) - \log a_{\rm Se}({\rm at} \ T_1) = (\Delta \ \overline{H}_{\rm Se}/4.575) \left[ (1/T_2) - (1/T_1) \right]$ (17)

The  $\Delta \overline{H}_{Se}$  values, calculated from the slope of these lines, are also listed in Table 1 in kcal/g-atom. Due to the very narrow range of homogeneity of the pyrite phase (~ 0.3 at% Se)  $\Delta \overline{H}_{Se}$  values could not be calculated for this compound. The partial molar enthalpies of Se obtained by the three methods are shown in Fig. 4.

The  $\Delta \overline{H}_{se}$  values of Table 1 were used to calculate activities of



Se for given temperatures with Eq. (17). In Fig. 5 the results are compared at 875 °C, with the data points shown only for method B and C. The curves "B" and "C" differ only by about 10% and have the same

slope. Curve "A" is close to curve "C" but has a somewhat steeper slope. Since the  $\Delta H_{se}$  values of method B and C (Fig. 4) are the same within the limits of error, a change in temperature will not affect the relative position of curve "B" and "C". The  $\Delta \overline{H}_{\mathrm{Se}}$  values of method A are, however, more negative and the position of curve "A" in Fig. 5 will shift with changing temperature with respect to curve "B" and "C". The good agreement between curves "A" and "C" in Fig. 5 is therefore fortuitous. In view of the simplifying assumptions the results of method A are actually quite acceptable for a quick evaluation of the experiments. But as the difference in the  $\Delta H_{se}$  data (Fig. 4) shows, for an accurate calculation method B or C has to be employed. The agreement between the  $\Delta H_{se}$  data of method B and C is excellent and the difference in the activity values, although larger than the spread of the data points, is not excessive. Still, since method C is based on actual measurements of the partial pressures of the various molecular species in the Se vapor, albeit at lower temperatures, preference is given to the results obtained by method C.

The most recent and also the most extensive studies of the thermodynamic properties of solid Co—Se alloys are those of *Laffitte* and *Cerclier*<sup>14, 15</sup> and of *Matlasevich* et al.<sup>24, 25</sup>. Both groups determined the activities of Co in the temperature range between about 400 and 600 °C by *emf* methods, *Laffitte* and *Cerclier* using a solid BaCl<sub>2</sub> electrolyte, *Matlasevich* et al. employing a liquid KCl—LiCl—CoCl<sub>2</sub> electrolyte. When one compares the two sets of activity data at 600 °C, the agreement is quite good, with the values of *Matlasevich* et al. being somewhat larger. Both sets of data points cluster randomly around previously derived theoretical curves<sup>2</sup>

$$\ln \lambda_{\rm Co} = \ln \left( \frac{1 - 6 \Delta N_{\rm Se}}{8 \Delta N_{\rm Se}} \right) - \frac{16 E_i}{RT} \left( \frac{\Delta N_{\rm Se}}{1 + 2 \Delta N_{\rm Se}} \right) - \ln K - \frac{E_v}{RT}$$
(18)

with  $\lambda_{C0}$  the absolute activity of Co,  $E_i$  the interaction energy between Co vacancies,  $E_v$  the energy of formation of a Co vacancy, K the term for the nonconfigurational contribution, and  $\Delta N_{Se} = N_{Se} - 0.5$ . Between 55 and 58.5 at% Se the sign of the temperature coefficient of the *emf* data of *Laffitte* and *Cerclier*<sup>14, 15</sup> changes with decreasing temperature from positive to negative and the agreement in this range at lower temperatures is therefore less satisfactory. At lower Se concentrations (beginning at 51.5 at% Se) the  $\Delta \overline{H}_{C0}$  values of the two groups differ only by 1 kcal and are slightly positive, but they deviate sharply towards strongly negative values at 54.5 at% Se<sup>14, 15</sup>, and at 56.5 at% Se<sup>24, 25</sup>, resp. The molar enthalpies of formation, obtained

by Gibbs-Duhem integration at 405 °C<sup>15</sup>, and at 427 °C<sup>24</sup>, are in the average  $-8 \text{ kcal/g-atom}^{24}$  and  $-14 \text{ kcal/g-atom}^{15}$ , resp., and in both cases they decrease slightly towards more negative values with increasing Se concentration. The enthalpy of formation of CoSe<sub>2</sub> was reported to be -8.54 kcal/g-atom at 427 °C<sup>24</sup>, and -14.25 kcal/gatom at 400 °C<sup>15</sup>, resp. The emf curve of Laffitte and Cerclier<sup>14, 15</sup> for CoSe<sub>2</sub> is composed of two straight branches. There is no indication in the phase diagram<sup>18</sup> that CoSe<sub>2</sub> is in equilibrium with a different phase above 450 °C which might explain the shape of the emf curve. Possibly the measurements at higher temperatures could have been affected either by a loss of Se from the specimens by evaporation or by the formation of a low melting eutectic at 495 °C in the BaCl<sub>2</sub>--CoCl<sub>2</sub> system<sup>35</sup>. Mills<sup>27</sup> calculated enthalpies of formation of Co-Se alloys at 25 °C from the free energy data of Laffitte and Cerclier at 405 °C and from estimated standard entropies by a Third Law evaluation. He obtained for an alloy with 51.7 at% Se  $\Delta H_{298}^{\circ} = -7.38$  kcal/gatom, for an alloy with 54.6 at% Se  $\Delta H^{\circ}_{298} = -7.68$  kcal/g-atom, and for  $\text{CoSe}_2 \ \Delta H^{\circ}_{298} = -7.46 \text{ kcal/g-atom}$ . Since these values, taking into account the enthalpy of fusion of Se, are in very good agreement with the enthalpies of formation of Matlasevich et al.<sup>24, 25</sup>, the  $\Delta H$  data of Laffitte and Cerclier, obtained by a Second Low evaluation, seem to be in error.

For a direct comparison with our data activities and partial molar enthalpies of Se were calculated by Gibbs-Duhem integration at the intermediate temperature of 600 °C and are plotted in Fig. 6. The activities of Se, calculated directly from the partial molar values of Cerclier<sup>15</sup>, do not agree with our results. However, by using our activity of Se at 58.5 at% Se obtained by method B or C as limiting value and then performing the Gibbs-Duhem integration, the agreement with the data of Cerclier<sup>15</sup> for alloys between 51 and 56 at% Se is very good. The  $\log a_{se}$  data of *Matlasevich* et al.<sup>24</sup> are less negative than ours but the shape of the curve is the same. Taking into account the uncertainties of the Gibbs-Duhem integration and the extrapolation involved, the agreement is satisfactory. The  $\Delta \overline{H}_{se}$  values of *Matlasevich* et al.<sup>24</sup>, shown in Fig. 4, are also in good agreement with our data. The  $\Delta H_{se}$ values of Cerclier<sup>15</sup>, not shown in Fig. 4, are much more negative (-30 to -28 kcal/g-atom) between 51.5 and 54.5 at% Se and then change abruptly to -12 kcal/g-atom at 56 at% Se.

Feenberg and Vaisburd<sup>26</sup> determined activities of Co in liquid Co—Se alloys at 1300 °C with an *emf* method using the cell  $Co_{(s)}$ /silicate melt +  $Co^{2+}/Al_2O_3$ /silicate melt +  $Co^{2+}/Co$ —Se<sub>(l)</sub>. The activity of Co decreases from 1.0 at about 35 at% Se to 0.1 at about 50 at% Se, in agreement with the phase diagram<sup>18</sup> which shows a two phase region  $\alpha$ -Co +  $L_2$  extending to about 35 at% Se at 1300 °C. Since no partial molar enthalpies were reported for the liquid Co—Se alloys, the data cannot be compared with the results on solid alloys.

*Eror* and *Wagner*<sup>23</sup> measured Se vapor pressures between 636 and 780 °C in the two phase regions  $\text{Co}_{1-x}\text{Se}_{(s)}$ —CoSe<sub>2(s)</sub> and  $\text{CoSe}_{2(s)}$ —Se<sub>(l)</sub>



Fig. 6. Activity of Se as a function of composition at 600  $^{\circ}\mathrm{C}$ 

and evaluated the activities of Se by treating the vapor as consisting only of Se atoms or of Se<sub>2</sub> molecules. The latter values for the two phase region Co<sub>1-x</sub>Se—CoSe<sub>2</sub> can be compared with our data at the Co<sub>1-x</sub>Se/Co<sub>1-x</sub>—CoSe<sub>2</sub> phase boundary evaluated according to method A. The results for three temperatures with the data of *Eror* and *Wag*ner<sup>23</sup> in parentheses are as follows:  $a_{\rm Se} = 0.037 (0.016)$  at 636 °C,  $a_{\rm Se} = 0.076 (0.044)$  at 703 °C,  $a_{\rm Se} = 0.15 (0.12)$  at 780 °C. The values of *Eror* and *Wagner* are lower than ours but become less so with increasing temperature. Dissociation pressures of Co—Se alloys between 700 and 1050 °C have been measured with a Bourdon gauge by *Igaki* and *Noda*<sup>16, 17</sup>. They constructed a p-T phase diagram in which nonstoichiometric Co<sub>1-x</sub>Se is replaced by the three compounds CoSe<sub>1.03</sub> (50.7 at% Se), CoSe<sub>1.13</sub> (53.0 at% Se), and CoSe<sub>1.30</sub> (56.5 at% Se), each with a very narrow range of homogeneity and each ordered up to the melting point. This is at variance with the phase diagram<sup>18</sup> and with the smooth activity—composition curves obtained in this study and by *Laffitte* and *Cerclier*<sup>14, 15</sup> and *Matlasevich* et al.<sup>24</sup>. The partial pressures for the CoSe<sub>1.30</sub>—CoSe<sub>2</sub> two phase region<sup>16, 17</sup> can be compared with the data of *Eror* and *Wagner*<sup>23</sup> for the Co<sub>1-x</sub>Se—CoSe<sub>2</sub> two phase field. At 636 °C the values are  $p \Sigma$  Se = 3 mm Hg<sup>16, 17</sup> and 0.1 mm Hg<sup>23</sup>, resp., and at about 880 °C the values are the same ( $p \Sigma$  Se  $\simeq$  500 mm Hg).

The activities and partial molar enthalpies of Se of the present investigation (method C) were combined with the corresponding data for Co of *Matlasevich* et al.<sup>24</sup> to give the integral thermodynamic data for the Co<sub>1-x</sub>Se phase at 600 °C. The data were taken from smoothed curves at selected compositions and are listed in Table 4. Between 52 and 58 at% Se the integral molar free energy is practically constant. With increasing Se concentration the integral enthalpy of formation  $\Delta H$  seems to become more negative (Fig. 4),  $\Delta \overline{H}_{Se}$  is getting progressively less negative, and  $\Delta \overline{H}_{Co}$  (Table 4) is turning towards more negative values. The partial molar enthalpies, however, have not been determined with high enough accuracy so that the concentration dependence of  $\Delta H$  is somewhat erratic. An independent calorimetric measurement of  $\Delta H$  would therefore be very desirable.

In two previous papers<sup>1, 2</sup> a model was developed to calculate activities in NiAs-type structures. Assuming a statistical distribution of transition metal atoms and transition metal vacancies in the (001/2) layers of the hexagonal lattice with a certain interaction between the vacancies, equations for the absolute activity of Co, Eq. (18), and by *Gibbs-Duhem* integration for the absolute activity of Se,  $\lambda_{Se}$ , have been derived:

$$\ln \lambda_{\rm Se} = \ln \left\{ \frac{\Delta N_{\rm Se}}{[N_{\rm Se} \ (0.666 - N_{\rm Se})]^{\frac{1}{2}}} - \frac{4 E_i}{RT} \left( \frac{1 - 2 N_{\rm Se}}{2 N_{\rm Se}^2} \right) + \text{const.}$$
(19)

Activities of Se were calculated at 600 °C by using the experimental activity at 52 at% Se obtained by method B and C, resp., as the reference point. The dashed curves in Fig. 6 are the values without interaction between the vacancies, i.e. ignoring the term containing  $E_i$ 

| · ·                          |
|------------------------------|
| $\sim$                       |
| ~                            |
| ĕ                            |
| ž                            |
| 01                           |
| -                            |
| 2                            |
| 5                            |
| ø                            |
| ~                            |
| \$                           |
| č                            |
| 2                            |
| 0                            |
| -                            |
| ••                           |
| ŝ                            |
| ø                            |
| 13                           |
| 2                            |
| The second                   |
| Ŷ                            |
| ~                            |
| 5                            |
| - 22                         |
| 2                            |
| ς.                           |
| 8                            |
| 8                            |
| <u>, 1</u> 3                 |
| 3                            |
| 5                            |
| -                            |
| 72                           |
| $\sim$                       |
| Ų                            |
| 0                            |
| ð                            |
| š                            |
| 9                            |
| *>                           |
| 8                            |
|                              |
| õ                            |
| 3                            |
| å                            |
| 2                            |
| Ω.                           |
| ~                            |
| n                            |
| 70                           |
| <u> </u>                     |
| ä                            |
| 1.                           |
| 5                            |
| 0                            |
| Ö                            |
| _                            |
| õ                            |
| 4                            |
| 45                           |
| +                            |
| 0                            |
| ~                            |
| ŝ                            |
| .2                           |
| 4                            |
| 5                            |
|                              |
| Ψ.                           |
| be                           |
| ope                          |
| rope                         |
| Prope                        |
| Prope                        |
| c Prope                      |
| ic Prope                     |
| nic Prope                    |
| mic Prope                    |
| amic Prope                   |
| namic Prope                  |
| pramic Prope                 |
| lynamic Prope                |
| odynamic Prope               |
| odynamic Prope               |
| modynamic Prope              |
| rmodynamic Prope             |
| ermodynamic Prope            |
| hermodynamic Prope           |
| Thermodynamic Prope          |
| Thermodynamic Prope          |
| . Thermodynamic Prope        |
| 4. Thermodynamic Prope       |
| 4. Thermodynamic Prope       |
| e 4. Thermodynamic Prope     |
| de 4. Thermodynamic Prope    |
| ble 4. Thermodynamic Prope   |
| able 4. Thermodynamic Prope  |
| Cable 4. Thermodynamic Prope |
| Table 4. Thermodynamic Prope |

| $-\Delta \widetilde{S}_{Sa}(calc.)$ | (e.u.)            | 7.41 | 8.26 | 8.89  | 9.40  | 9.83  | 10.22 | 10.57 |
|-------------------------------------|-------------------|------|------|-------|-------|-------|-------|-------|
| $-\Delta \overline{S}_{Sp}(exp.)$   | (e.u.)            | 5.75 | 7.54 | 9.00  | 10.26 | 10.64 | 10.57 | 10.57 |
| $-\Delta \overline{H}_{Se}(calc.)$  | (kcal/g-<br>atom) | 20.5 | 19.5 | 18.5  | 17.7  | 16.9  | 16.1  | 15.5  |
| $\Delta S$                          | (e.u.)            | 0.71 | 0.06 | 0.45  | 0.50  | 0.33  | 2.50  |       |
| $-\Delta G$                         | (kcal/g-<br>atom) | 8.87 | 8.83 | 8.87  | 8.91  | 8.83  | 8.83  | 8.91  |
| $H \Delta$ —                        | (kcal/g-<br>atom) | 8.25 | 8.88 | 9.26  | 9.35  | 9.12  | 11.01 | l     |
| $-\Delta H_{co}$                    | (kcal/g-<br>atom) | 3.4  | -2.3 | — 1.7 | -1.6  |       | + 4.0 | ]     |
| $-\Delta \bar{H}_{s_{a}}$           | (kcal/g-<br>atom) | 19.0 | 18.8 | 18.6  | 18.3  | 17.4  | 16.3  | 15.5  |
| ]og ac.                             | (exp.)            | 0.78 | 1.26 | 1.68  | 2.08  | 2.44  | 2.80  | 3.14  |
| -100 aso                            | (exp.)            | 3.50 | 3.06 | 2.69  | 2.34  | 2.03  | 1.77  | 1.57  |
|                                     | at% Se            | 52.0 | 53.0 | 54.0  | 55.0  | 56.0  | 57.0  | 58.0  |

in Eq. (19). The solid lines in Fig. 6 are the smoothed experimental values and the square boxes ( $\square$  and  $\blacksquare$ ) are the data obtained from Eq. (19) with an interaction energy  $E_i = 7780$  cal/g-atom for both method B and C. The agreement between the experimental and theoretical values is excellent, although the symmetry of the phase changes continuously at 53.5 at% Se from hexagonal to monoclinic<sup>13</sup>.

A further consequence of the model is the composition dependence of the partial molar enthalpy. Applying the Gibbs-Helmholtz equation to Eq. (18) we obtain

$$\mathrm{d}\,\ln\lambda_{\mathrm{Co}} = -\left[ (E_v/R) + (16\;E_i/R) \left( \frac{\Delta N_{\mathrm{Se}}}{1 + 2\,\Delta N_{\mathrm{Se}}} \right) \right] \mathrm{d}\;(1/T) \qquad (20)$$

Comparing Eq. (20) with

$$d \ln a_{\rm Co} = (\Delta H_{\rm Co}/R) d (1/T)$$
(21)

we get

$$\Delta \overline{H}_{\rm Co} = -\left[E_v + 16 \ E_i \left(\frac{\Delta N_{\rm Se}}{1 + 2 \ \Delta N_{\rm Se}}\right)\right] \tag{22}$$

By performing a Gibbs-Duhem integration with Eq. (22) we finally obtain

$$\Delta \overline{H}_{\text{Se}} = -4 E_t \left( \frac{1 - 2 N_{\text{Se}}}{2 N_{\text{Se}}^2} \right) + \text{const}$$
(23)

Eq. (23) was matched with the experimental  $\Delta H_{\rm Se}$  values at 58 at% Se and the values at other compositions were then calculated (Table 4). The theoretical data are in good quantitative agreement with the experimental results (Fig. 4), but seem to exhibit a different change in slope.

Combining Eqs. (19) and (23) we finally get the partial molar entropy

$$\Delta \overline{S}_{\text{Se}} = -R \ln \left\{ \frac{\Delta N_{\text{Se}}}{[N_{\text{Se}} \left(0.666 - N_{\text{Se}}\right)]^{\frac{1}{2}}} \right\} + \text{const}$$
(24)

The experimental data and the theoretical values, calculated by solving Eq. (24) at 58 at% Se, are listed in Table 4. Although the experimental  $\Delta \overline{S}_{Se}$  data are obtained as the difference of two rather large values, the agreement is satisfactory.

### Acknowledgment

The financial support of this investigation by the "Fonds zur Förderung der wissenschaftlichen Forschung" under grant number 1322 is gratefully acknowledged.

### References

- <sup>1</sup> M. Ettenberg, K. L. Komarek, and E. Miller, J. Solid State Chem. 1, 583 (1970).
- <sup>2</sup> R. M. Geffken, K. L. Komarek, and E. Miller, J. Solid State Chem. 4,153 (1972).
- <sup>3</sup> *M. Hansen* and *K. Anderko*, Constitution of Binary Alloys, 2. Aufl. New York: McGraw-Hill. 1958.
- <sup>4</sup> R. P. Elliott, Constitution of Binary Alloys, First Supplement. New York: McGraw-Hill. 1965.
- <sup>5</sup> F.S. Shunk, Constitution of Binary Alloys, Second Supplement. New York: McGraw-Hill. 1969.
- <sup>6</sup> U. Hashimoto, Nippon Kinzoku Gakkai-Shi 2, 67 (1938); Chem. Abstr. 32, 7381<sup>5</sup> (1938).
- <sup>7</sup> L. D. Dudkin and V. I. Vaidanich, Fiz. Tverd. Tela 2, 1526 (1960).
- <sup>8</sup> I. Oftedal, Z. physik. Chem. 128, 137 (1927).
- <sup>9</sup> W. F. DeJong and H. W. V. Willems, Physica 7, 74 (1927).
- <sup>10</sup> W. F. DeJong and H. W. V. Willems, Z. anorg. allgem. Chem. **170**, 241 (1928).
- <sup>11</sup> S. Tengnér, Z. anorg. allgem. Chem. 239, 126 (1938).
- <sup>12</sup> B. Lewis and N. Elliott, J. Amer. Chem. Soc. 62, 3180 (1940).
- <sup>13</sup> F. Bohm, F. Gronvold, H. Haraldsen, and H. Prydz, Acta Chem. Scand. 9, 1510 (1955).
- <sup>14</sup> M. Laffitte and O. Cerclier, High Temp.—High Press. 1, 449 (1969).
- <sup>15</sup> O. Cerclier, Thèse, Univ. de Provence, France (1971).
- <sup>16</sup> K. Igaki and Y. Noda, Nippon Kinzoku Gakkaishi 33, 371 (1969); Chem. Abstr. 70, 109812 n (1969).
- <sup>17</sup> Y. Noda and K. Igaki, ibid. 35, 1031 (1971); Chem. Abstr. 76, 28248 e (1972).
- <sup>18</sup> K. L. Komarek and K. Wessely, Mh. Chem. 103, 896 (1972).
- <sup>19</sup> A. L. N. Stevels, Philips Res. Rep. Suppl. Nr. 9 (1969).
- <sup>20</sup> L. Cambi, M. Elli, and E. Giudici, La Chim. e L'Ind. 51, 795 (1969).
- <sup>21</sup> C. Fabre, Ann. chim. phys. 10, 472 (1887).
- <sup>22</sup> M. Kh. Karapet'yants, Trudy M. Kh. T. I. im. D. I. Mendeleeva 20, 10 (1955).
- <sup>23</sup> N. G. Eror and J. B. Wagner, Jr., Acta Met. 11, 1339 (1963).
- <sup>24</sup> O. B. Matlasevich, V. A. Geiderikh, and Ya. I. Gerassimov, Rev. Chim. minér. 9, 191 (1972).
- <sup>25</sup> O. B. Matlasevich and V. A. Geiderikh, J. Fiz. Khim. 46, 1829 (1972).
- <sup>26</sup> I. Y. Feenberg and S. E. Vaisburd, J. Fiz. Khim. 46, 1575 (1972).
- <sup>27</sup> K. Mills, National Physical Laboratory, Teddington, England, private comm.
- <sup>28</sup> K. L. Komarek and G. Stummerer, Mh. Chem. 102, 1360 (1971).
- <sup>29</sup> W. F. Roeser and S. Lonberger, Natl. Bur. Std. (U.S.), Circ. No. 590 (1956).

- <sup>30</sup> H. Keller, H. Rickert, D. Detry, J. Drowart, and P. Goldjinger, Z. physik. Chem. [NF] 75, 273 (1971).
- <sup>31</sup> H. Rau, Ber. Bunsenges. Physik. Chem. **71**, 711 (1967).
- <sup>32</sup> E. H. Baker, J. Chem. Soc. A 1968, 1089.
- <sup>33</sup> R. F. Brebrick, J. Phys. Chem. 43, 3031 (1965).
- <sup>34</sup> L. S. Brooks, J. Amer. Chem. Soc. 74, 227 (1952).
- <sup>35</sup> R. Gee and R. A. J. Shelton, Trans. Inst. Min. Metall. (Sect. C: Mineral Process. Extr. Metall.) 80, C 192 (1971).

Prof. Dr. K. L. Komarek Institut für Anorganische Chemie Universität Wien Währinger Straβe 42 A-1090 Wien Österreich